Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
1.
Cell ; 186(11): 2288-2312, 2023 05 25.
Article in English | MEDLINE | ID: covidwho-20232943

ABSTRACT

Inflammasomes are critical sentinels of the innate immune system that respond to threats to the host through recognition of distinct molecules, known as pathogen- or damage-associated molecular patterns (PAMPs/DAMPs), or disruptions of cellular homeostasis, referred to as homeostasis-altering molecular processes (HAMPs) or effector-triggered immunity (ETI). Several distinct proteins nucleate inflammasomes, including NLRP1, CARD8, NLRP3, NLRP6, NLRC4/NAIP, AIM2, pyrin, and caspases-4/-5/-11. This diverse array of sensors strengthens the inflammasome response through redundancy and plasticity. Here, we present an overview of these pathways, outlining the mechanisms of inflammasome formation, subcellular regulation, and pyroptosis, and discuss the wide-reaching effects of inflammasomes in human disease.


Subject(s)
Inflammasomes , Humans , Apoptosis Regulatory Proteins/metabolism , CARD Signaling Adaptor Proteins/metabolism , Caspases/metabolism , Cell Death , Inflammasomes/metabolism , Neoplasm Proteins/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Pyroptosis
2.
Cells ; 12(8)2023 04 19.
Article in English | MEDLINE | ID: covidwho-2295139

ABSTRACT

Inflammation and mitochondrial-dependent oxidative stress are interrelated processes implicated in multiple neuroinflammatory disorders, including Alzheimer's disease (AD) and depression. Exposure to elevated temperature (hyperthermia) is proposed as a non-pharmacological, anti-inflammatory treatment for these disorders; however, the underlying mechanisms are not fully understood. Here we asked if the inflammasome, a protein complex essential for orchestrating the inflammatory response and linked to mitochondrial stress, might be modulated by elevated temperatures. To test this, in preliminary studies, immortalized bone-marrow-derived murine macrophages (iBMM) were primed with inflammatory stimuli, exposed to a range of temperatures (37-41.5 °C), and examined for markers of inflammasome and mitochondrial activity. We found that exposure to mild heat stress (39 °C for 15 min) rapidly inhibited iBMM inflammasome activity. Furthermore, heat exposure led to decreased ASC speck formation and increased numbers of polarized mitochondria. These results suggest that mild hyperthermia inhibits inflammasome activity in the iBMM, limiting potentially harmful inflammation and mitigating mitochondrial stress. Our findings suggest an additional potential mechanism by which hyperthermia may exert its beneficial effects on inflammatory diseases.


Subject(s)
Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Animals , Mice , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Macrophages/metabolism , Inflammation/metabolism , Heat-Shock Response
3.
Neurol Neurochir Pol ; 2022 Jun 27.
Article in English | MEDLINE | ID: covidwho-2282679

ABSTRACT

Headache is one of the most prevalent, although often underreported, symptoms of coronavirus disease 2019 (COVID-19). It is generally accepted that this symptom is a form of secondary headache due to systemic viral infection. There are several hypotheses that try to explain its aetiopathogenesis. One of the most compelling is related to innate immune response to viral infection. This rationale is supported by similarities to other viral infections and the temporal overlap between immunological reactions and headache. Moreover, several key factors in innate immunity have been shown to facilitate headache e.g. interferons, interleukin (IL) -1-ß, IL-6, and tumour necrosis factor. There is also a possibility that the virus causes headache by the direct activation of afferents through pattern recognition receptors (i.e. Toll-like receptor 7). Moreover, some data on post COVID-19 headache and after vaccination against SARS-CoV-2 infection suggests a similar cytokine-mediated pathomechanism in these clinical situations. Future research should look for evidence of causality between particular immune response factors and headache. Identifying key molecules responsible for headache during acute viral infection would be an important step towards managing one of the most prevalent secondary headache disorders.

4.
Arch Razi Inst ; 78(1): 305-313, 2023 02.
Article in English | MEDLINE | ID: covidwho-2248109

ABSTRACT

Due to the pandemic of COVID -19 disease and the fact that the effective variables in the severity and control of the disease have not been established, numerous factors have been investigated, including the study of inflammatory factors. A cross-sectional study was carried out to investigate the proinflammatory cytokines in patients with COVID -19, conducted in Baghdad, Iraq. The age of the patients was above > (15) years old, with confirmed infection documented by polymerase chain reaction (PCR). The subjects were 132 patients, 69 (52.3%) males, and 63 (47.7%) females. Patients were divided into three pathological groups: mild patients (45), moderate patients (34), and severe patients (53), each group was divided into four weeks according to symptoms onset date. The most common clinical symptoms were cough, fever, and headache, while sore throat, gastrointestinal symptoms, chest pain, and loss of taste and smell were less common in COVID -19 patients. Sandwich-Enzyme-Linked Immunosorbent Assay kits were used to evaluate levels of proinflammatory cytokines, including IL-1ß, IL-6, IL-8, and TNF-α. The results IL-6 and TNF-α were significantly elevated in mild during the four weeks with (P=0.0071) and (0.0266) respectively, levels of IL-1ß were increased with highly significant differences (P=0.0001) while levels of IL-8 were decreased with highly significant differences (P=0.0001) during the four weeks. In moderate patients, levels of (IL-1ß, IL-6, and IL-8) increased without significance (P=0.661, 0.074, 0.0651), respectively; in contrast, the levels of TNF-α increased with significant (P=0.0452) across four weeks. Severe COVID-19 patients showed significantly increased differences in levels of (IL-6, IL-8, and TNFα) (P=0.0438, 0.0348, 0.0447), respectively, while no significant differences in the level of IL-1ß (P=0.0774). This study showed that investigating inflammatory factors in the COVID-19 pandemic is crucial in controlling and treating.


Subject(s)
COVID-19 , Cytokines , Female , Humans , Male , Cross-Sectional Studies , Interleukin-6 , Interleukin-8 , Iraq/epidemiology , Pandemics , Tumor Necrosis Factor-alpha
5.
Vaccines (Basel) ; 11(2)2023 Jan 17.
Article in English | MEDLINE | ID: covidwho-2200965

ABSTRACT

Since the spread of the deadly virus SARS-CoV-2 in late 2019, researchers have restlessly sought to unravel how the virus enters the host cells. Some proteins on each side of the interaction between the virus and the host cells are involved as the major contributors to this process: (1) the nano-machine spike protein on behalf of the virus, (2) angiotensin converting enzyme II, the mono-carboxypeptidase and the key component of renin angiotensin system on behalf of the host cell, (3) some host proteases and proteins exploited by SARS-CoV-2. In this review, the complex process of SARS-CoV-2 entrance into the host cells with the contribution of the involved host proteins as well as the sequential conformational changes in the spike protein tending to increase the probability of complexification of the latter with angiotensin converting enzyme II, the receptor of the virus on the host cells, are discussed. Moreover, the release of the catalytic ectodomain of angiotensin converting enzyme II as its soluble form in the extracellular space and its positive or negative impact on the infectivity of the virus are considered.

6.
Thromb J ; 20(1): 77, 2022 Dec 16.
Article in English | MEDLINE | ID: covidwho-2162376

ABSTRACT

BACKGROUND: Thromboembolism was a chief cause of mortality in 70% of patients with COVID-19. Our objective was to see if serum interleukins 1 beta (IL-1ß) and soluble platelets selectin (sP-selectin) could serve as novel markers of thromboembolism in COVID-19 patients. METHODS: This cross sectional study involved 89 COVID-19 patients who were recruited from 1st of February to 1st of May 2021. Clinical and laboratory data were collected, and chest imaging was performed. The levels of IL-1ß and sP-selectin were assessed in all cases through ELISA kits. Comparisons between groups were done using an unpaired t-test in normally distributed quantitative variables. In contrast, a non-parametric Mann-Whitney test was used for non-normally distributed quantitative variables. RESULTS: Severe COVID-19 infection was associated with higher serum levels of CRP, Ferritin, LDH, D dimer, IL-1ß and sP-selectin (P <  0.001) with significant correlation between levels of IL-1ß and sP-selectin (r 0.37, P <  0.001), D-dimer (r 0.29, P 0.006) and Ferritin (r 0.5, p <  0.001). Likewise, a positive correlation was also found between levels of sP-selectin, D-dimer and Ferritin (r 0.52, P <  0.001) (r 0.59, P <  0.001). Imaging studies revealed that 9 (10.1%) patients developed venous and 14 (15.7%) developed arterial thrombosis despite receiving anticoagulant therapy. Patients with thrombotic events had significantly higher levels of IL-1ß, sP-selectin and LDH serum levels. Meanwhile, there was no statistical significance between CRP, D-dimer or Ferritin levels and the development of thrombotic events. CONCLUSION: IL-1ß and sP-selectin levels can be promising predictors for severe COVID-19 infection and predictable thrombosis.

7.
Cell Host Microbe ; 31(2): 243-259.e6, 2023 02 08.
Article in English | MEDLINE | ID: covidwho-2149479

ABSTRACT

Elevated levels of cytokines IL-1ß and IL-6 are associated with severe COVID-19. Investigating the underlying mechanisms, we find that while primary human airway epithelia (HAE) have functional inflammasomes and support SARS-CoV-2 replication, they are not the source of IL-1ß released upon infection. In leukocytes, the SARS-CoV-2 E protein upregulates inflammasome gene transcription via TLR2 to prime, but not activate, inflammasomes. SARS-CoV-2-infected HAE supply a second signal, which includes genomic and mitochondrial DNA, to stimulate leukocyte IL-1ß release. Nuclease treatment, STING, and caspase-1 inhibition but not NLRP3 inhibition blocked leukocyte IL-1ß release. After release, IL-1ß stimulates IL-6 secretion from HAE. Therefore, infection alone does not increase IL-1ß secretion by either cell type. Rather, bi-directional interactions between the SARS-CoV-2-infected epithelium and immune bystanders stimulates both IL-1ß and IL-6, creating a pro-inflammatory cytokine circuit. Consistent with these observations, patient autopsy lungs show elevated myeloid inflammasome gene signatures in severe COVID-19.


Subject(s)
COVID-19 , Inflammasomes , Humans , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Interleukin-6 , SARS-CoV-2 , Cytokines/metabolism , Interleukin-1beta/metabolism
8.
J Pers Med ; 12(10)2022 Oct 17.
Article in English | MEDLINE | ID: covidwho-2143318

ABSTRACT

BACKGROUND: Immune dysregulation has been linked to morbidity and mortality in COVID-19 patients. Understanding the immunology of COVID-19 is critical for developing effective therapies, diagnostics, and prophylactic strategies to control the disease. AIM: The aim of this study was to correlate cytokine and chemokine serum levels with COVID-19 disease severity and mortality. SUBJECTS AND METHODS: A total of 60 hospitalized patients from the Tabuk region of Saudi Arabia with confirmed COVID-19 were included in the study. At hospital admission, the IL-1 ß, IL-2, IL-8, IL-10, LT-B4, and CCL-2 serum levels were measured. The cytokine levels in COVID-19 patients were compared to the levels in 30 healthy matched control subjects. RESULTS: The IL-1 ß, IL-2, LTB-4, CCL-2, and IL-8 levels (but not IL-10) were significantly higher in all COVID-19 patients (47 survivors and 13 non-survivors) compared with the levels in the healthy control group. In the non-survivor COVID-19 patients, patients' age, D-dimer, and creatinine kinase were significantly higher, and IL-1 ß, IL-2, and IL-8 were significantly lower compared with the levels in the survivors. CONCLUSION: Mortality rates in COVID-19 patients are associated with increased age and a failure to mount an effective immune response rather than developing a cytokine storm. These results warrant the personalized treatment of COVID-19 patients based on cytokine profiling.

9.
Front Immunol ; 13: 953730, 2022.
Article in English | MEDLINE | ID: covidwho-2065508

ABSTRACT

Adult onset Still disease (AOSD) is a systemic inflammatory disorder characterized by skin rash, spiking fever, arthritis, sore throat, lymphadenopathy, and hepatosplenomegaly. Although the etiology of this disease has not been fully clarified, both innate and acquired immune responses could contribute to its pathogenesis. Hyperactivation of macrophages and neutrophils along with low activation of natural killer (NK) cells in innate immunity, as well as hyperactivation of Th1 and Th17 cells, whereas low activation of regulatory T cells (Tregs) in acquired immunity are involved in the pathogenic process of AOSD. In innate immunity, activation of monocytes/macrophages might play central roles in the development of AOSD and macrophage activation syndrome (MAS), a severe life-threating complication of AOSD. Regarding the activation mechanisms of monocytes/macrophages in AOSD, in addition to type II interferon (IFN) stimulation, several pathways have recently been identified, such as the pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs)-pattern recognition receptors (PRRs) axis, and neutrophil extracellular traps (NETs)-DNA. These stimulations on monocytes/macrophages cause activation of the nucleotide-binding oligomerization domain, leucine-rich repeat, and pyrin domain (NLRP) 3 inflammasomes, which trigger capase-1 activation, resulting in conversion of pro-IL-1ß and pro-IL-18 into mature forms. Thereafter, IL-1ß and IL-18 produced by activated monocytes/macrophages contribute to various clinical features in AOSD. We identified placenta-specific 8 (PLAC8) as a specifically increased molecule in monocytes of active AOSD, which correlated with serum levels of CRP, ferritin, IL-1ß, and IL-18. Interestingly, PLAC8 could suppress the synthesis of pro-IL-1ß and pro-IL-18 via enhanced autophagy; thus, PLAC8 seems to be a regulatory molecule in AOSD. These findings for the activation mechanisms of monocytes/macrophages could shed light on the pathogenesis and development of a novel therapeutic strategy for AOSD.


Subject(s)
Macrophage Activation Syndrome , Still's Disease, Adult-Onset , Humans , Interleukin-18/metabolism , Macrophage Activation Syndrome/etiology , Macrophage Activation Syndrome/metabolism , Macrophages , Monocytes/metabolism , Proteins/metabolism
10.
Life Sci ; 309: 121048, 2022 Nov 15.
Article in English | MEDLINE | ID: covidwho-2061633

ABSTRACT

Pirfenidone (PFD) is a non-peptide synthetic chemical that inhibits the production of transforming growth factor-beta 1 (TGF-ß1), tumor necrosis factor-alpha (TNF-α), platelet-derived growth factor (PDGF), Interleukin 1 beta (IL-1ß), and collagen 1 (COL1A1), all of which have been linked to the prevention or removal of excessive scar tissue deposition in many organs. PFD has been demonstrated to decrease apoptosis, downregulate angiotensin-converting enzyme (ACE) receptor expression, reduce inflammation through many routes, and alleviate oxidative stress in pneumocytes and other cells while protecting them from COVID-19 invasion and cytokine storm. Based on the mechanism of action of PFD and the known pathophysiology of COVID-19, it was recommended to treat COVID-19 patients. The use of PFD as a treatment for a range of disorders is currently being studied, with an emphasis on outcomes related to reduced inflammation and fibrogenesis. As a result, rather than exploring the molecule's chemical characteristics, this review focuses on innovative PFD efficacy data. Briefly, herein we tried to investigate, discuss, and illustrate the possible mechanisms of actions for PFD to be targeted as a promising anti-inflammatory, anti-fibrotic, anti-oxidant, anti-apoptotic, anti-tumor, and/or anti-SARS-CoV-2 candidate.


Subject(s)
COVID-19 Drug Treatment , Transforming Growth Factor beta1 , Humans , Transforming Growth Factor beta1/metabolism , Antioxidants/pharmacology , Antioxidants/therapeutic use , Tumor Necrosis Factor-alpha , Interleukin-1beta , SARS-CoV-2 , Fibrosis , Pyridones/pharmacology , Pyridones/therapeutic use , Collagen Type I/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Platelet-Derived Growth Factor , Inflammation/drug therapy , Transforming Growth Factors , Angiotensins
11.
EBioMedicine ; 85: 104299, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2061075

ABSTRACT

A hyperinflammatory response during severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection crucially worsens clinical evolution of coronavirus disease 2019 (COVID-19). The interaction between SARS-CoV-2 and angiotensin-converting enzyme 2 (ACE2) triggers the activation of the NACHT, leucine-rich repeat, and pyrin domain-containing protein 3 (NLRP3) inflammasome. Enhanced inflammasome activity has been associated with increased disease severity and poor prognosis. Evidence suggests that inflammasome activation and interleukin-1ß (IL-1ß) release aggravate pulmonary injury and induce hypercoagulability, favoring progression to respiratory failure and widespread thrombosis eventually leading to multiorgan failure and death. Observational studies with the IL-1 blockers anakinra and canakinumab provided promising results. In the SAVE-MORE trial, early treatment with anakinra significantly shortened hospital stay and improved survival in patients with moderate-to-severe COVID-19. In this review, we summarize current evidence supporting the pathogenetic role of the NLRP3 inflammasome and IL-1ß in COVID-19, and discuss clinical trials testing IL-1 inhibition in COVID-19.


Subject(s)
COVID-19 Drug Treatment , COVID-19 , Inflammasomes , Humans , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , COVID-19/complications , Interleukin 1 Receptor Antagonist Protein , SARS-CoV-2 , Interleukin-1beta/metabolism
12.
J Allergy Clin Immunol ; 150(4): 796-805, 2022 10.
Article in English | MEDLINE | ID: covidwho-1991092

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection may result in a severe pneumonia associated with elevation of blood inflammatory parameters, reminiscent of cytokine storm syndrome. Steroidal anti-inflammatory therapies have shown efficacy in reducing mortality in critically ill patients; however, the mechanisms by which SARS-CoV-2 triggers such an extensive inflammation remain unexplained. OBJECTIVES: To dissect the mechanisms underlying SARS-CoV-2-associated inflammation in patients with severe coronavirus disease 2019 (COVID-19), we studied the role of IL-1ß, a pivotal cytokine driving inflammatory phenotypes, whose maturation and secretion are regulated by inflammasomes. METHODS: We analyzed nod-like receptor protein 3 pathway activation by means of confocal microscopy, plasma cytokine measurement, cytokine secretion following in vitro stimulation of blood circulating monocytes, and whole-blood RNA sequencing. The role of open reading frame 3a SARS-CoV-2 protein was assessed by confocal microscopy analysis following nucleofection of a monocytic cell line. RESULTS: We found that circulating monocytes from patients with COVID-19 display ASC (adaptor molecule apoptotic speck like protein-containing a CARD) specks that colocalize with nod-like receptor protein 3 inflammasome and spontaneously secrete IL-1ß in vitro. This spontaneous activation reverts following patient's treatment with the IL-1 receptor antagonist anakinra. Transfection of a monocytic cell line with cDNA coding for the ORF3a SARS-CoV-2 protein resulted in ASC speck formation. CONCLUSIONS: These results provide further evidence that IL-1ß targeting could represent an effective strategy in this disease and suggest a mechanistic explanation for the strong inflammatory manifestations associated with COVID-19.


Subject(s)
COVID-19 Drug Treatment , Inflammasomes , Anti-Inflammatory Agents , Cytokine Release Syndrome/drug therapy , Cytokines/metabolism , DNA, Complementary , Humans , Inflammasomes/metabolism , Interleukin 1 Receptor Antagonist Protein/therapeutic use , Interleukin-1beta/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Proteins , Receptors, Interleukin-1 , SARS-CoV-2
13.
Biomolecules ; 12(7)2022 07 20.
Article in English | MEDLINE | ID: covidwho-1938686

ABSTRACT

Inflammasomes are intracellular signaling complexes of the innate immune system, which is part of the response to exogenous pathogens or physiological aberration. The multiprotein complexes mainly consist of sensor proteins, adaptors, and pro-caspase-1. The assembly of the inflammasome upon extracellular and intracellular cues drives the activation of caspase-1, which processes pro-inflammatory cytokines IL-1ß and IL-18 to maturation and gasdermin-D for pore formation, leading to pyroptosis and cytokine release. Inflammasome signaling functions in numerous infectious or sterile inflammatory diseases, including inherited autoinflammatory diseases, metabolic disorders, cardiovascular diseases, cancers, neurodegenerative disorders, and COVID-19. In this review, we summarized current ideas on the organization and activation of inflammasomes, with details on the molecular mechanisms, regulations, and interventions. The recent developments of pharmacological strategies targeting inflammasomes as disease therapeutics were also covered.


Subject(s)
COVID-19 Drug Treatment , Inflammasomes , Caspase 1/metabolism , Cytokines , Humans , Inflammasomes/metabolism , Pyroptosis
14.
Front Microbiol ; 13: 874998, 2022.
Article in English | MEDLINE | ID: covidwho-1855391

ABSTRACT

Systemic chronic active Epstein-Barr virus infection (sCAEBV) is an EBV-positive T- or NK-cell neoplasm revealing persistent systemic inflammation. Twenty-five percent of sCAEBV patients accompany angiopathy. It is crucial to clarify the mechanisms of angiopathy development in sCAEBV because angiopathy is one of the main causes of death. Interleukin-1ß (IL-1ß) is reported to be involved in angiopathy onset. We investigated if IL-1ß plays a role as the inducer of angiopathy of sCAEBV. We detected elevated IL-1ß levels in four out of 17 sCAEBV patient's plasma. Interestingly, three out of the four had clinically associated angiopathy. None of the other patients with undetectable level of IL-1ß had angiopathy. In all patients with high plasma levels of IL-1ß and vascular lesions, EBV-infected cells were CD4-positive T cells. In one patient with high plasma IL-1ß, the level of IL-1ß mRNA of the monocytes was 17.2 times higher than the level of the same patient's EBV-infected cells in peripheral blood. In Ea.hy926 cells, which are the models of vascular endothelial cells, IL-1ß inhibited the proliferation and induced the surface coagulation activity. IL-1ß is a potent biomarker and a potent therapeutic target to treat sCAEBV accompanying angiopathy.

15.
Expert Opin Pharmacother ; 23(6): 681-691, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1769033

ABSTRACT

INTRODUCTION: Aspirin or non-steroidal anti-inflammatory drugs (NSAIDs) and colchicine are first-line treatments for acute and recurrent pericarditis. Drugs blocking the NACHT, leucine-rich repeat, and pyrin domain-containing protein 3 (NLRP3) inflammasome/interleukin-1ß (IL-1ß) axis are beneficial in patients with multiple recurrences. AREAS COVERED: In this review, the role of the NLRP3 inflammasome/IL-1ß axis in the pathophysiology of pericarditis is discussed. Updates about novel therapies targeting IL-1 for recurrent pericarditis (RP) and practical considerations for their use are provided. EXPERT OPINION: IL-1 inhibitors have been increasingly studied for RP in recent years. NLRP3 inflammasome is a key mediator in the pathophysiology of RP. IL-1ß, its main product, can sustain its own production and feeds local and systemic inflammation. Randomized clinical trials testing anakinra (a recombinant form of the IL-1 receptor antagonist blocking IL-1α and IL-1ß) and rilonacept (an IL-1α and IL-1ß trap) have shown that IL-1 blockade reduces recurrences. These trials also helped in phenotyping patients with RP. Patients with multiple recurrences and signs of pericardial and/or systemic inflammation might benefit from IL-1 blockers in order to interrupt cyclic flares of auto-inflammation. Given this evidence, guidelines should consider incorporating IL-1 blockers.


Subject(s)
Pericarditis , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Colchicine/therapeutic use , Humans , Inflammasomes/metabolism , Inflammasomes/therapeutic use , Inflammation/drug therapy , Pericarditis/diagnosis , Pericarditis/drug therapy
17.
Inflamm Res ; 71(3): 293-307, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1729272

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is capable of inducing the activation of NACHT, leucine-rich repeat, and pyrin domain-containing protein 3 (NLRP3) inflammasome, a macromolecular structure sensing the danger and amplifying the inflammatory response. The main product processed by NLRP3 inflammasome is interleukin (IL)-1ß, responsible for the downstream production of IL-6, which has been recognized as an important mediator in coronavirus disease 2019 (COVID-19). Since colchicine is an anti-inflammatory drug with the ability to block NLRP3 inflammasome oligomerization, this may prevent the release of active IL-1ß and block the detrimental effects of downstream cytokines, i.e. IL-6. To date, few randomized clinical trials and many observational studies with colchicine have been conducted, showing interesting signals. As colchicine is a nonspecific inhibitor of the NLRP3 inflammasome, compounds specifically blocking this molecule might provide increased advantages in reducing the inflammatory burden and its related clinical manifestations. This may occur through a selective blockade of different steps preceding NLRP3 inflammasome oligomerization as well as through a reduced release of the main cytokines (IL-1ß and IL-18). Since most evidence is based on observational studies, definitive conclusion cannot be drawn and additional studies are needed to confirm preliminary results and further dissect how colchicine and other NLRP3 inhibitors reduce the inflammatory burden and evaluate the timing and duration of treatment.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , COVID-19 Drug Treatment , Colchicine/therapeutic use , Inflammasomes/immunology , NLR Family, Pyrin Domain-Containing 3 Protein/immunology , SARS-CoV-2 , Animals , COVID-19/immunology , Humans
18.
Stem Cell Reports ; 17(3): 538-555, 2022 03 08.
Article in English | MEDLINE | ID: covidwho-1692861

ABSTRACT

To date, the direct causative mechanism of SARS-CoV-2-induced endotheliitis remains unclear. Here, we report that human ECs barely express surface ACE2, and ECs express less intracellular ACE2 than non-ECs of the lungs. We ectopically expressed ACE2 in hESC-ECs to model SARS-CoV-2 infection. ACE2-deficient ECs are resistant to the infection but are more activated than ACE2-expressing ones. The virus directly induces endothelial activation by increasing monocyte adhesion, NO production, and enhanced phosphorylation of p38 mitogen-associated protein kinase (MAPK), NF-κB, and eNOS in ACE2-expressing and -deficient ECs. ACE2-deficient ECs respond to SARS-CoV-2 through TLR4 as treatment with its antagonist inhibits p38 MAPK/NF-κB/ interleukin-1ß (IL-1ß) activation after viral exposure. Genome-wide, single-cell RNA-seq analyses further confirm activation of the TLR4/MAPK14/RELA/IL-1ß axis in circulating ECs of mild and severe COVID-19 patients. Circulating ECs could serve as biomarkers for indicating patients with endotheliitis. Together, our findings support a direct role for SARS-CoV-2 in mediating endothelial inflammation in an ACE2-dependent or -independent manner.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Models, Biological , SARS-CoV-2/physiology , Toll-Like Receptor 4/metabolism , Angiotensin-Converting Enzyme 2/genetics , COVID-19/pathology , COVID-19/virology , Endothelial Cells/cytology , Endothelial Cells/metabolism , Gene Expression Profiling , Human Umbilical Vein Endothelial Cells , Humans , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , NF-kappa B/antagonists & inhibitors , NF-kappa B/genetics , NF-kappa B/metabolism , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism , SARS-CoV-2/isolation & purification , Severity of Illness Index , Single-Cell Analysis , Toll-Like Receptor 4/antagonists & inhibitors , Toll-Like Receptor 4/genetics , p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors , p38 Mitogen-Activated Protein Kinases/genetics , p38 Mitogen-Activated Protein Kinases/metabolism
19.
J Virol ; 96(2): e0106321, 2022 01 26.
Article in English | MEDLINE | ID: covidwho-1476388

ABSTRACT

COVID-19 affects multiple organs. Clinical data from the Mount Sinai Health System show that substantial numbers of COVID-19 patients without prior heart disease develop cardiac dysfunction. How COVID-19 patients develop cardiac disease is not known. We integrated cell biological and physiological analyses of human cardiomyocytes differentiated from human induced pluripotent stem cells (hiPSCs) infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the presence of interleukins (ILs) with clinical findings related to laboratory values in COVID-19 patients to identify plausible mechanisms of cardiac disease in COVID-19 patients. We infected hiPSC-derived cardiomyocytes from healthy human subjects with SARS-CoV-2 in the absence and presence of IL-6 and IL-1ß. Infection resulted in increased numbers of multinucleated cells. Interleukin treatment and infection resulted in disorganization of myofibrils, extracellular release of troponin I, and reduced and erratic beating. Infection resulted in decreased expression of mRNA encoding key proteins of the cardiomyocyte contractile apparatus. Although interleukins did not increase the extent of infection, they increased the contractile dysfunction associated with viral infection of cardiomyocytes, resulting in cessation of beating. Clinical data from hospitalized patients from the Mount Sinai Health System show that a significant portion of COVID-19 patients without history of heart disease have elevated troponin and interleukin levels. A substantial subset of these patients showed reduced left ventricular function by echocardiography. Our laboratory observations, combined with the clinical data, indicate that direct effects on cardiomyocytes by interleukins and SARS-CoV-2 infection might underlie heart disease in COVID-19 patients. IMPORTANCE SARS-CoV-2 infects multiple organs, including the heart. Analyses of hospitalized patients show that a substantial number without prior indication of heart disease or comorbidities show significant injury to heart tissue, assessed by increased levels of troponin in blood. We studied the cell biological and physiological effects of virus infection of healthy human iPSC-derived cardiomyocytes in culture. Virus infection with interleukins disorganizes myofibrils, increases cell size and the numbers of multinucleated cells, and suppresses the expression of proteins of the contractile apparatus. Viral infection of cardiomyocytes in culture triggers release of troponin similar to elevation in levels of COVID-19 patients with heart disease. Viral infection in the presence of interleukins slows down and desynchronizes the beating of cardiomyocytes in culture. The cell-level physiological changes are similar to decreases in left ventricular ejection seen in imaging of patients' hearts. These observations suggest that direct injury to heart tissue by virus can be one underlying cause of heart disease in COVID-19.


Subject(s)
COVID-19/immunology , Induced Pluripotent Stem Cells , Interleukin-10/immunology , Interleukin-1beta/immunology , Interleukin-6/immunology , Myocytes, Cardiac , Cells, Cultured , Humans , Induced Pluripotent Stem Cells/immunology , Induced Pluripotent Stem Cells/pathology , Induced Pluripotent Stem Cells/virology , Myocytes, Cardiac/immunology , Myocytes, Cardiac/pathology , Myocytes, Cardiac/virology
20.
Viruses ; 13(10)2021 10 15.
Article in English | MEDLINE | ID: covidwho-1470996

ABSTRACT

Infections with viral pathogens are widespread and can cause a variety of different diseases. In-depth knowledge about viral triggers initiating an immune response is necessary to decipher viral pathogenesis. Inflammasomes, as part of the innate immune system, can be activated by viral pathogens. However, viral structural components responsible for inflammasome activation remain largely unknown. Here we analyzed glycoproteins derived from SARS-CoV-1/2, HCMV and HCV, required for viral entry and fusion, as potential triggers of NLRP3 inflammasome activation and pyroptosis in THP-1 macrophages. All tested glycoproteins were able to potently induce NLRP3 inflammasome activation, indicated by ASC-SPECK formation and secretion of cleaved IL-1ß. Lytic cell death via gasdermin D (GSDMD), pore formation, and pyroptosis are required for IL-1ß release. As a hallmark of pyroptosis, we were able to detect cleavage of GSDMD and, correspondingly, cell death in THP-1 macrophages. CRISPR-Cas9 knockout of NLRP3 and GSDMD in THP-1 macrophages confirmed and strongly support the evidence that viral glycoproteins can act as innate immunity triggers. With our study, we decipher key mechanisms of viral pathogenesis by showing that viral glycoproteins potently induce innate immune responses. These insights could be beneficial in vaccine development and provide new impulses for the investigation of vaccine-induced innate immunity.


Subject(s)
Immunity, Innate/immunology , Inflammasomes/immunology , Macrophages/immunology , NLR Family, Pyrin Domain-Containing 3 Protein/immunology , Viral Envelope Proteins/immunology , Viral Fusion Proteins/immunology , Cell Line, Tumor , Cytomegalovirus/immunology , Hepacivirus/immunology , Humans , Interleukin-1beta/biosynthesis , Interleukin-1beta/immunology , Pyroptosis/immunology , Severe acute respiratory syndrome-related coronavirus/immunology , SARS-CoV-2/immunology , THP-1 Cells
SELECTION OF CITATIONS
SEARCH DETAIL